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Abstract

In this work, the heat transfer in a channel composed of a smooth and a corrugated wall is studied under laminar

¯ow conditions. The velocity and temperature distributions are determined with the help of a ®nite element model.
The heat transfer performance of the corrugated wall channel is compared with that of a smooth wall duct. The
numerical model is utilized in a genetic algorithm to maximize the heat transfer by optimizing the corrugation

pro®le, for given volume of the corrugated wall and pressure drop in the channel. Some optimum corrugation
pro®les are presented at the end. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The ¯uid dynamical and thermal phenomena occur-
ring in corrugated wall channels have been studied in

di�erent engineering sectors. Corrugated surfaces are,
for example, utilized in compact heat exchangers [1].
The corrugation allows the heat transfer surface

between dissipators and coolant ¯uids to be extended,
maintaining at the same time a reduced dissipator
volume and weight. The study of the heat transfer

through corrugated surface is also particularly interest-
ing for the applications in the electronic industry [2,3].
In fact, the cooling of electronic devices is often car-
ried out by forcing a ¯uid ¯ow on the boards where

the devices are soldered. Due to the presence of the
devices and, in some cases, dissipators, the pro®le of
the board surface can be schematized with more or less

continuous and regular corrugations.

Many theoretical and experimental studies are

available in the literature on the ¯uid dynamical
and thermal phenomena occurring in corrugated
wall channels [4±13]. Various heat transfer charac-

teristics have been observed under di�erent con-
ditions. In general, the corrugation of the walls
extends the heat transfer surface of the channels

and generates turbulence even at low Reynolds
numbers. If the eddy velocity is su�ciently high
and the ¯uid is not very conductive, the turbulent
phenomena can enhance the local convection coe�-

cient. However, the pressure drop in corrugated
wall channels is higher than in ¯at wall channels of
the same external size. Moreover, the corrugation of

the walls, in some cases, can induce stagnation of
the coolant ¯uid. As a consequence, the local con-
vection coe�cient is so reduced that, even if the

heat transfer surface between the wall and the ¯uid
is extended, the global heat transfer e�ectiveness
does not overcome that of a ¯at wall channel of a
comparable size. Therefore, the heat transfer e�ec-

tiveness of corrugated channel depends on many
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factors concerning the geometry of the walls, the

properties of the coolant ¯uid, and the nature of

the ¯ow. Moreover, it can only be correctly com-

pared with the heat transfer e�ectiveness of ¯at

wall channels by also considering the external size,

the wall volume or weight and the pressure drop.

Most of the studies performed on the ¯uid dy-

namical and thermal phenomena occurring in corru-

gated wall channels consider corrugations having a

periodical pattern which is described by simple func-

tions such as rectangular, triangular, or sinusoidal.

However, due to the variety of thermal and ¯uid

dynamical characteristics described in the literature

under di�erent conditions, the study of more com-

plex corrugation pro®les can be useful to better

evaluate the convenience of assigning to the channel

walls corrugated rather than ¯at pro®les.

In the present work, the problem of optimizing the

heat transfer is studied in a channel composed of a ¯at

insulated wall and a corrugated one crossed by a heat

¯ux uniformly imposed. The analysis is limited to the

region where the dynamic and thermal pro®le is fully

developed, under laminar ¯ow conditions. To the cor-

rugated wall pro®le, a periodical pattern is assigned,

which is described by a ®fth order polynomial func-

tion. The velocity and temperature distributions are

determined with the help of a ®nite element model.

The performance of the corrugated wall channel is
compared with that of a conduit composed of two
zero thickness ¯at walls having the same external size.
Moreover, the ®nite element model is utilized in an

original genetic algorithm to determine the values of
the polynomial pro®le parameters which optimize the
heat transfer performance of the corrugated channel

for given volume of the wall or pressure drop in the
channel. Finally, some optimum corrugation pro®les
are presented for di�erent situation.

2. The mathematical model

Let us consider a channel composed of two parallel
¯at walls. One wall is smooth and thermally insulated,

and the other is corrugated and crossed by a heat ¯ux
q0 which is uniformly imposed on its external surface
(Fig. 1). Moreover, the thickness of the insulated wall

is ideally zero, while that of the corrugated wall is a
periodical function f of the longitudinal coordinate x,
whose period is l. Between the two walls, a coolant

¯uid passes through in laminar ¯ow in the x direction.
Let us introduce the following hypotheses:

. the system is in steady state;

Nomenclature

c speci®c heat capacity of the ¯uid (J/kg K)
d distance between the external surfaces of the

channel (m)

f corrugated wall thickness (m)
F normalized corrugated wall thickness
F
-

average normalized corrugated wall thick-

ness
hx local heat transfer coe�cient (W/m2 K)
kf , ks thermal conductivity of the ¯uid and solid

(W/m K)
l period of the corrugation function (m)
L normalized period of the corrugation func-

tion

Nue equivalent Nusselt number
Nux local equivalent Nusselt number
p sum of the pressure and the gravity potential

contribution (Pa)
P normalized pressure
Pr Prandtl number

q0 heat ¯ux per unit of surface (W/m2)
Re Reynolds number
tf , ts temperature of the ¯uid and solid (K)

Tf , Ts normalized temperature of the ¯uid and
solid

tb0 bulk temperature in the reference channel
(K)

Tb0 normalized bulk temperature in the reference

channel
u, v velocity components in the x- and y-direc-

tions (m/s)

U, V normalized velocity components
w average velocity in the corrugated channel

(m/s)

w0 average velocity in the reference channel (m/
s)

x, y longitudinal and transversal coordinates
X, Y normalized coordinates

Greek symbols
a convergence parameter

g ratio between solid and ¯uid thermal con-
ductivity

Dp0 pressure drop in the reference channel for a

length equal to l (Pa)
DP normalized pressure drop for a length equal

to l (Pa)

m dynamic viscosity of the ¯uid (kg/m s)
r density of the ¯uid (kg/m3)
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. the velocity and temperature pro®les are fully devel-
oped;

. the ¯uid properties are uniform;

. the viscous dissipation within the ¯uid is negligible.

Let y be the transversal coordinate. Due to the sym-

metry in the normal to plane (x, y ) direction, the heat
transfer performances of the channel can be studied by
only determining the velocity and temperature distri-

butions on the plane (x, y ). Moreover, due to the
periodicity of the channel shape, the study can be lim-
ited to a portion whose length is equal to l.

The velocity distribution must satisfy the force and
mass balance equations, which for a steady-state
incompressible ¯ow can be reduced to the following

form:
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where r and m are the density and the dynamic vis-
cosity of the ¯uid, respectively, u and v are the velocity
components in the x- and y- direction, respectively,

and p is the sum of the pressure and the gravity poten-
tial contribution.
The temperature distributions in both the ¯uid and

the solid must satisfy the following energy balance
equation:
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c and k being the speci®c heat and the thermal conduc-
tivity of the ¯uid, respectively, and tf and ts the tem-

perature in the ¯uid and in the solid, respectively.
Eqs. (1)±(5) can be reduced to a dimensionless form

by introducing a reference channel delimited by an

insulated ¯at surface and a ¯at surface crossed by a
uniform heat ¯ux equal to q0. Let the reference chan-
nel surfaces be at the same distance d as the corrugated

channel external surfaces. Moreover, assuming in the
reference channel the same ¯ow rate of the same ¯uid
as in the corrugated one, let w0 be the average velocity
and Dp0 the pressure drop in a portion of the reference

channel whose length is equal to l. The following
dimensionless entities can now be introduced:

X � x

d
Y � y

d
L � l

d
F�X� � f�Xd�

d
U � u
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where Dt is the coolant ¯uid bulk temperature drop
which is the same in the reference and corrugate chan-

nel portion. By substituting the dimensionless entities
in Eqs. (1)±(5), the following dimensionless equations
are obtained:
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�8�Fig. 1. (a) Corrugated channel. (b) Grids of the temperature

(�), pressure (�), and velocity (�).
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where Re � rw�x�2�dÿ f �x��=m � rw02d=m and Pr �
mc=kf are the Reynolds and Prandtl numbers, respect-
ively, and are the same for the corrugated and the

reference channel.
Eqs. (7)±(9) must be integrated by imposing the fol-

lowing boundary conditions:
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DP being the normalized pressure drop between the

inlet and the outlet section of the corrugated channel
portion. Moreover, the value of the pressure in one
point of the channel is required.

Eqs. (10) and (11) must be integrated by imposing
that temperatures and heat ¯uxes in the normal to the
surface direction are identical in the solid and in the
¯uid on the contact surface, and:
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where g is the ratio between the thermal conductivity
of the solid and that of the ¯uid. Moreover, the value
of the temperature in one point of the channel is

required.
Velocity, pressure and temperature distributions in

the corrugated channel portion can be numerically
determined by utilizing a ®nite element method like the

following one. In the channel portion, two staggered
grids can be drawn as in Fig. 2. In the nodal points,
discrete distributions are considered for velocity, press-

ure, or temperature. In the trapezoidal elements delim-
ited between four adjacent nodes, the generic
continuous entity E (velocity, pressure, or temperature)

can be approximated by an interpolation of the values
Ek which it assumes in the four nodes:

E �
X
k

Xÿ Xj�k�
Xk ÿ Xj�k�

Yÿ ai�k� ÿ bi�k�X
ak ÿ ai�k� �

ÿ
bk ÿ bi�k�

�
X
Ek �23�

where Xk and Xj�k� are node coordinates in the longi-
tudinal direction, ak � bkX is the value which Y
assumes on the line passing through the oblique side

where node k is, and ai�k� � bi�k�X is the value which Y
assumes on the opposite side. In this way, E linearly
changes on the element sides and on the segments join-

ing the middle points of each couple of opposite sides.
Eqs. (7)±(11) can now be integrated after having

divided each trapezoidal element in four subelements

by joining the middle points of the opposite sides. For
each node where U, V, or P is unknown, Eqs. (7)±(9),
respectively, must be integrated on the four subele-
ments surrounding the node. By taking boundary con-

ditions (12)±(16) into account, the following system of
equations are obtained:h
A� Bx � diag� �U� � By � diag� �V�

i
� �U� Sx � �P�Mx � DP � Nx � Pn �24�

h
A� Bx � diag� �U� � By � diag� �V�

i
� �V� Sy

�P�My � DP � Ny � Pn �25�

Fig. 2. Optimum channel geometry for Re = 500 and Pr =

5.
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Cx � �U� Cy � �V � 0 �26�

where the operator diag transforms the argument vec-

tor in a diagonal matrix, vectors �U and �V contain the
velocity components of all points of the velocity grid,
and vector �P contains the pressure values in all points

of the pressure grid with the exception of those on the
outlet section and that where the pressure is known
and equal to Pn: Moreover, matrix A introduces the

contribution of the momentum di�usion, while
matrices Bx and By of the momentum convection in
the x- and y- direction, respectively. Finally, matrices
Cx and Cy introduce the contribution of the mass

transfer into account in the x- and y-directions, re-
spectively.
Systems (24)±(26) provide as many equations as the

unknown values of U, V, and P, respectively. Since DP
is unknown, while the volume ¯ow rate per unit of
width _V

0
in the corrugated and reference channel is the

same, the following equation can be added:

D � �U � _V
0 � 1 �27�

By solving the system composed of systems (24)±(27),
the normalized pressure drop in the channel and the

discrete distributions of the velocity and pressure can
be determined. An arbitrary value can be assigned to
Pn, since it does not in¯uence the pressure drop neither

the velocity distribution, which only are important to
evaluate the heat transfer performances of the corru-
gated channel. Since the system is not linear, it can be

solved iteratively. To linearize systems (24) and (25),
the arguments �U and �V of the operator diag can be
replaced by vectors �Ua and �Va, respectively, which con-
tains arbitrary known values of the velocity com-

ponents. After solution of the linearized global system,
vectors �Ua and �Va can be updated in the following
way:

�Ua � �1ÿ a� � �Ua � a� �U �28�

�Va � �1ÿ a� � �Va � a� �V �29�

where a is a parameter ranging from 0 to 1. The pro-
cedure can be iterated until relative changes in vectors
�Ua and �Va become smaller than an established value.
After having determined the discrete velocity distri-

bution, Eqs. (10) and (11) can be integrated on the sur-

face of the four subelements surrounding each node of
the temperature grid where values are unknown. By
taking boundary conditions (17)±(22) into account, the

following system of equations is obtained:h
H� Gx � diag

ÿ
�Ut

�
� Gy � diag

ÿ
�Vt

�i
� �T

�Mt �Nt � Tn �30�

where �T contains the temperature values in all points
of the temperature grid with the exception of those on

the outlet section and that where temperature is
known and equal to Tn, and vectors �Ut and �Vt contain
the velocity component values calculated in the same

points. Moreover, matrix H introduces the contri-
bution of the conduction, while matrices Gx and Gy

the convection in the x- and y-directions, respectively.

Lastly, vector Mt takes the temperature drop between
the outlet and the inlet section into account, which is,
after normalization, equal to 1.

By solving the system (30), the discrete temperature
distributions is determined as a function of Tn, which
can be arbitrarily assigned. Due to the linearity of the
system, in fact, the heat transfer performances of the

channel are not determined by the value of Tn:
To compare the heat transfer performances of the

corrugated channel with those of the reference one, let

us suppose that the inlet bulk temperature is the same
for both channels. Under this condition, let tb0�x� be
the bulk temperature which occurs in the reference

channel. Now, let us suppose that the temperature dis-
tribution on the external surface of the corrugated wall
occurred on the corresponding surface of the reference

channel. In this case, the local heat transfer coe�cient
in the reference channel would be:

hx � q 00

ts�x, 0� ÿ tb0�x� �31�

The local Nusselt number would then result:

Nux � hx2d

k
�32�

Referring to the dimensionless entities, Nux can be cal-
culated as follows:

Nux � RePr

L

1

Ts�X, 0� ÿ Tb0�X� �33�

An equivalent Nusselt number for the corrugated

channel can then be de®ned as the average of Nux:

Nue � 1

L

�L
0

Nux dX �34�

Such an equivalent Nusselt number corresponds to the

average Nusselt number which would be calculated for
the reference channel if on its heat ¯ux crossed surface
occurred the same temperature distribution as on the

corrugated channel, for given heat ¯ux and inlet bulk
temperature. It depends on the channel geometry, Re,
Pr, and g:
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3. Results

The mathematical model described in Section 2 has

been utilized in a genetic algorithm [14±18] to deter-
mine the corrugation pro®le which provide the best

heat transfer performance under di�erent conditions.

To the pressure and temperature grids, 25 � 50 and
30 � 50 nodes have been assigned, respectively. As a

consequence, 24 � 49 nodes have been assigned to the

velocity grid. More close grids have been tested with-

out ®nding any signi®cant variation in Nue or in DP:
In the testing cases, a pressure grid of 31� 50 elements

produced alterations in Nue and DP of 0.3% and

0.25%. The same alterations were produced by a press-

ure grid of 25 � 60 elements. In the cases where F(X )

was constant, the velocity and the temperature distri-

butions obtained with the model with the selected grid

were in good agreement with the analytical one-dimen-

sional solution and the numerical errors in Nue and

DP were less than 0.13% and 0.12%, respectively.

For the corrugation pro®le function F(X ), a ®fth

order polynomial form has been assumed. In this way,

two waves can be obtained in the corrugation pro®le.

Moreover, by imposing that the function and its ®rst

derivative assume the same value in X = 0 and X � L,

the corrugation pro®le is univocally determined by

four points. Therefore, as corrugation pro®le describ-

ing parameters the values Fi assumed by F(X ) in the

®rst four of six equidistant points between 0 and L

have been assumed.

In the genetic algorithm, 12 sample populations and

33% selection percentage have been established.

During parameter reproduction, random errors uni-

formly distributed between ÿ10 and +10% of the par-

ameter values were introduced. The parameter set was

composed of the corrugation parameters Fi and par-

ameter a: To each sample the value of the equivalent

Nusselt number was assigned. However, if the velocity

distribution was not found within an established num-

Fig. 3. Streamlines near the corrugated wall of Fig. 2 for Re

= 500.

Table 1

Characteristic parameters of the wall corrugations which maximize Nue under di�erent conditions

Constraint Re Pr F0 F1 F2 F3
�F Nue DP

± 100 1 8.94 4.63

± 100 5 0.4 0.4 0.4 0.4 0.4 8.94 4.63

± 500 1 8.94 4.63

± 500 5 0.25 0.234 0.128 0.372 0.25 9.62 4.18

�F 100 1 6.91 3.52
�F 100 5 0.263 0.269 0.101 0.207 0.2 7.24 3.52
�F 500 1 7.32 3.9
�F 500 5 8.77 3.9

DP 100 1 7.29 2.5

DP 100 5 0.263 0.263 0.263 0.263 0.263 7.29 2.5

DP 500 1 7.29 2.5

DP 500 5 0.193 0.184 0.117 0.269 0.193 7.34 2.5

DP 100 1 7.75 3

DP 100 5 0.307 0.307 0.307 0.307 0.307 7.75 3

DP 500 1 7.75 3

DP 500 5 0.215 0.203 0.121 0.309 0.215 8.08 3
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ber of iteration, a null evaluation was assigned. In this
way, the value of a has been found, which ensured a
fast convergence of the iterative solution algorithm.

The parental velocity distribution and pressure drop
between the inlet and the outlet sections were utilized
as an initial guess.

Some corrugation pro®le optimizations have been
carried out for Re equal to 100 and 500, and for Pr
equal to 1 and 5. Constraints have been imposed on

the minimum and maximum values of F(X ), the
volume of the corrugated wall, and the pressure drop
between the inlet and the outlet sections of the channel

portion. In particular, to prevent the channel from
being too narrow and the corrugated wall from being
too thick, the following constraints have been
imposed:

max
x

f�x�R0:4 min
x

f�x�r0:1 �35�

Moreover, the analysis has been limited to the case

where L is equal to 1 and g to 500 (corresponding to
the ratio between the thermal conductivities of copper
and water).

By imposing no constraint either on the wall volume
or on the pressure drop in the channel, it has been
found that a wavy wall pro®le only maximizes Nue

when both Re and Pr are not too low. In particular,

for the case where Re is equal to 500 and Pr is equal

to 5, the optimum wall pro®le reported in Fig. 2 has

been found. In the other three cases (Re = 100 and/or

Pr = 1), by maximizing Nue, a ¯at wall having the

maximum allowed thickness has been obtained. The

characteristic parameter of the obtained geometries are

reported in Table 1, together with those of the ge-

ometries discussed in the following. It can be observed

that, when Re is equal to 500 and Pr to 5, the wavy

wall will provide a 78.6% increment in the heat trans-

fer with respect to the case of a zero thickness wall

�Nue � 5:385� and a 7.6% increment with respect to

the case of a maximum thickness wall.

The optimum corrugation pro®le obtained by maxi-

mizing Nue for Re equal to 500 and Pr to 5 is com-

posed of two similar wave having the maximum

Fig. 4. Isothermal curves in the channel of Fig. 2 for Re =

500 and Pr = 5. Curves are drawn every 5% of the di�erence

between the maximum and the minimum normalized tempera-

ture.

Fig. 5. Optimum channel geometry for �F constrained to 0.2.

Fig. 6. Streamlines near the corrugated wall of Fig. 5 for Re

equal to 100 and 500.
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amplitude. Such a pro®le coincides with that obtained
with the genetic algorithm by maximizing the contact

surface between ¯uid and solid. When Re is equal to
500 and Pr to 5, the increment of the heat transfer sur-
face between ¯uid and solid overcome the reductions

of the local convective heat transfer coe�cient due to
the channel enlargements caused by the wavy pro®le
with respect to the case of a maximum thickness wall.

On the contrary, when Re or Pr is lower, such re-
ductions are stronger and cannot be overcome by any
extension of the contact surface.

In Figs. 3 and 4 the velocity and temperature distri-
butions in the channel of Fig. 2 are reported for Re
equal to 500 and Pr to 5. One larger eddy occurs in
the ®rst cavity and smaller eddies in the second one.

Near the peaks the heat is directly transferred from the

wall to the main ¯ow due to conduction, so that the
isothermal curves are denser. In the cavities, the heat

removed from the wall is transferred to the main ¯ow
through the eddies. This convective heat transfer mech-
anism is less e�cient when the eddy velocity is lower

(Re = 100) or the conduction is prevalent (Pr = 1),
so that, in these cases, the local convection coe�cient
is noticeably reduced in the cavities.

It is interesting to observe that, for Re equal to 500
and Pr to 5, the equivalent Nusselt numbers of chan-
nels with maximum amplitude sinusolidal corrugation

pro®le having period equal to l and l/2 are equal to
8.07 and 8.28, respectively. Therefore, under these con-
ditions, sinusoidal corrugation pro®les perform worse
than ®fth order polynomial and ¯at pro®les.

It must be noticed that the volume of the corrugated

Fig. 7. Isothermal curves in the channel of Fig. 5 for Re equal to 100 and 500 and Pr equal to 1 and 5. Curves are drawn every

5% of the di�erence between the maximum and the minimum normalized temperature.
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wall of Fig. 2 is much smaller than that of the maxi-

mum thickness wall obtained as the optimum one for
low Reynolds or Prandtl numbers. If needed, the thick-
ness of the ¯at wall can be reduced, by decreasing the

external size of the channel. In this way, for a given
drop between the wall and bulk temperatures, the dis-
sipated heat slightly increases and the system becomes

more compact. However, if the external size of the
channel is constrained, it can be interesting to optimize

the corrugation pro®le for a given value of the average
wall thickness �F, which is representative of the wall
volume and weight.

By constraining the volume of the corrugated wall,
it has been found that a wavy pro®le maximizes Nue
even if Re and/or Pr are low. In particular, by con-
straining �F to 0.2, the optimum wall pro®le reported in
Fig. 5 has been obtained in every case. In particular,

with respect to the case of a maximum thickness wall
(F(X ) = 0.2; Nue � 6:72; DP � 1:95), the wavy wall of

Fig. 5 provides a 30.5% increment in the heat transfer
when Re is equal to 500 and Pr to 5, a 8.9% increment
when Re is equal to 500 and Pr to 1, and a 7.7%

increment when Re is equal to 100 and Pr to 5.
The optimum corrugation pro®le obtained in every

case by maximizing Nue for �F constrained to 0.2 co-
incides with that obtained with the genetic algorithm
by maximizing either the contact surface between ¯uid

and solid or the maximum thickness of the wall. Such
a pro®le provides larger values of the local convection

coe�cient near the higher peak and a more extended
heat transfer surface between ¯uid and solid with

respect to the case of a maximum thickness wall.

Therefore, even if the convection in the cavities is
reduced for low values of Reynolds or Prandtl num-
bers, the wavy pro®le results in being more e�cient.

In Figs. 6 and 7 the velocity and temperature distri-
butions in the channel of Fig. 5 are reported. For Re

equal to 500, only one larger eddy occurs in the two
cavities, while for Re equal to 100 two smaller eddies
occur. When Re is lower, for given q0, the temperature

increment Dt is higher, since the mass ¯ow rate is
lower. Therefore, the temperature drop between the

wall and the ¯uid is relatively smaller, mainly when Pr
is low and the conduction prevails.
By looking at Table 1, it is evident that the corru-

gated wall of Fig. 5 provides a much larger pressure
drop than the ¯at one having the same volume, while

the corrugated wall of Fig. 2 provide a smaller press-
ure drop than the ¯at one having the same maximum
height. Therefore, it is interesting to ®nd the wall ge-

ometry which maximizes Nue for a given pressure drop
between the inlet and the outlet sections.

By constraining the normalized pressure drop DP, it
has still been found that a wavy wall pro®le only maxi-
mizes Nue when both Re and Pr are not too low. In

particular, by constraining DP to 3 and 2.5 the opti-
mum wall pro®les reported in Fig. 8 has been found
for the case where Re is equal to 500 and Pr to 5. The

optimum pro®les of Fig. 8 are very similar to that of
Fig. 2, but the wave amplitude is reduced. In the other

three cases (Re = 100 and/or Pr = 1), by maximizing
Nue, a ¯at wall has been obtained having normalized

Fig. 8. Optimum channel geometries for Re = 500, Pr = 5, and DP constrained to 2.5 and 3.
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thickness equal to 0.307 for DP constrained to 3 and
to 0.263 for DP constrained to 2.5. However, referring

to the heat dissipated through a ¯at wall causing the
same pressure drop, the optimum geometries obtained
for the case where Re is equal to 500 and Pr to 5 pro-

vide a 4.4% increment when DP is constrained to 3
and only a 0.7% increment when DP is constrained to
2.5. Moreover, by constraining the normalized pressure

drop to be less than 2.4, a ¯at wall has been found to
maximize Nue even in the case where Re is equal to
500 and Pr to 5 (Fig. 9). Therefore, by assigning to the

channel a wavy wall, improvements in the heat transfer
can only be obtained when the allowed pressure drop
is not too low.

4. Conclusions

The proposed mathematical model can be utilized in
a genetic algorithm to optimize the geometry of a wall

of a plane channel cooled by a laminar ¯ow in order
to maximize the heat transferred through the wall. In
particular, for a given distance between the external
surfaces of the channel, it is possible to determine

whether it is more expedient to assign to the wall a
corrugated or ¯at pro®le, taking some constraints into
account on the wall volume or on the pressure drop in

the channel.
The results obtained demonstrate that, when no con-

straint is imposed either on the wall volume or the

pressure drop, a corrugated wall pro®le only maxi-
mizes the heat transfer when both the Reynolds and
Prandtl numbers are not too low. Under these con-

ditions, in the considered case, the optimum corru-
gated wall pro®le found by the genetic algorithm
provides a nearly 8% increment with respect to the
heat dissipated by the optimum ¯at wall pro®le.

Moreover, when both the channel size and the wall
volume are constrained, a corrugated wall pro®le can
maximize the heat transfer even if the Reynolds and

Prandtl numbers are low. However, the improvements
in the heat transfer of the optimum corrugated wall
pro®les are larger when the Reynolds and Prandtl

numbers are higher. In particular, the optimum corru-
gated wall found by the genetic algorithm provides in
the considered cases up to a 30% increment with
respect to the heat dissipated by the optimum ¯at wall

of the same volume.
Finally, when the pressure drop in the channel is

constrained, a corrugated wall pro®le can only maxi-

mize the heat transfer when the Reynolds and Prandtl
numbers and the pressure drop are not too low. For
given pressure drop, with respect to the heat dissipated

by the optimum ¯at wall, the optimum corrugated wall
pro®les found by the genetic algorithm in the con-
sidered cases provide up to a 10% increment.

In general, the relative improvements in the heat
transfer provided by the optimum ®fth order poly-

nomial corrugation pro®le increase with the Reynolds
and Prandtl numbers and with the pressure drop in the
channel. Such a result is in accordance with the con-

clusions of the previous analyses of the heat transfer in
corrugated channels considering simpler corrugation
pro®les such as rectangular [10] or sinusoidal [13].

However, the adoption of a ®fth order polynomial
pro®le in the present analysis allows more various and
e�cient corrugated wall geometries to be considered.
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